Sweating, dehydration and prevention of heatstroke

Sudoración, deshidratación y prevención del golpe de calor

Ildefonso Alvear-Ordenes

Laboratorio de Fisiología Aplicada (FISAP), Instituto de Biomedicina (IBIOMED) y Departamento de Ciencias Biomédicas. Universidad de León.

doi: 10.18176/archmeddeporte.00037

In the thermoregulatory system, the sweat glands respond to a complex physiological relationship between the central nervous system, the cardiovascular system and the skin. At rest, 80% of heat is dissipated by conduction, convection and radiation. When ambient temperature exceeds the temperature of the skin, ~32°C, these mechanisms are no longer effective and the body starts to secrete sweat, taking over the evaporation of 80% of the dissipated heat. It is necessary to maintain a balanced body temperature for the organism to work correctly and, increasing the internal temperature by more than a couple of degrees has significant physiological consequences that might even be life-threatening.

To maintain a normal internal temperature (36.8 ± 0.5°C), the maximum temperature of the skin is required to be 35ºC, to thereby produce an appropriate temperature gradient from the core to the skin. In this mechanism, an increase in relative air humidity will progressively and significantly reduce evaporation by sweating. These effects can be compensated by the wind that facilitates evaporation and its radiating effect. In any case, and without considering environmental conditions, there are very few types of exercise that produce enough wind speed itself for this, such as cycling.

In any of the conditions observed above, hydration is fundamental. Almost 80 years ago, the effects of physical performance in a hot atmosphere had already been observed, demonstrating the need to ingest liquids to replace losses due to sweat.1 It should also be considered that there are considerable differences in daily hydration (0.74 L/day to 2.70 L/day) among healthy young adults.2 Furthermore, it has been observed that in sport, continuous exercise and intermittent exercise do not have the same effect on hydration efficiency, and the latter is more efficient.3 Scientific entities update this knowledge cyclically leading to a considerable number of recommendations on hydration, euhydration and hydration with supplementation, even in special environments.4

There are specific recommendations to avoid pathologies associated with heat caused by effort.5

In situations of heat stress, increased activity in the vasodilation system is responsible for 80% to 90% of the increase in blood flow to the skin. During exercise, blood supply to the active muscles and blood flow to the skin to dissipate heat come into conflict, both are important in thermal regulation, regulation of arterial pressure, to cover metabolic needs, and in cardiovascular homoeostasis. These conditions seem to be associated with dehydration when the water loss is greater than 2%, 2-3% or 4% of body mass. Consequently, exercising when dehydrated, particularly in a hot atmosphere, can increase the risk of heat-related illnesses, including heat stroke. However, working from studies performed on more than 5,000 soldiers, only 17% of cases were associated with dehydration.6 Heatstroke seems to be more associated with other factors such as acclimatising to the heat, medicines, genetic predisposition and injuries.4,6 It has also been observed that incidence of heatstroke has increased greatly since the 1980s. In the USA alone, more than 3,300 deaths were attributed to this cause between 2006 and 2010.

At rest, urination is the best way of eliminating liquid, followed by the skin, respiration, faecal matter and sweat. However, when exercising, in a hot atmosphere, or a combination of the two, the situation is completely reversed. There is a great interest in finding out about and pinpointing biomarkers that represent both hydration and dehydration. These biomarkers can be found by collecting urine samples (osmolality, specific severity, colour, volume; considered to be non-invasive measurements)4 or plasma/saline solution (osmolality, vasopressin, etc.). Biomarkers are considered to be just as important as the actual measurement of difference in body mass3,4.

Dehydration induced by sweating not only causes changes in these markers but a loss of electrolytes that must be recovered, such as sodium.6 Consequently, sweating during exercise also makes it possible...
aumento de la sudoración, deshidratación y prevención del golpe de calor

et al.

amino acids and another for L-lactate. The first papers on biosensors began by testing an inefficient biosensor for temperature in the rhesus monkey. The development of biosensor technology has been rapid, with over 60 articles published every year. Since the 1990s, one of the few years, studies on biosensors have really taken off. An average of over 200 articles are published every year. One of the first biosensors was designed to measure sweat rate, and sweat loss.

Many of the biosensors being developed are intended for diagnosis or screening of pathologies, such as the case of glucose sensitive patches. These biosensors can be built into products or fabric clothing, they can also be designed as different models of patches or encapsulated systems that cover the skin. Some studies on biosensors associated with physical activity deserve a mention, such as the system to record bipolar ECG. This uses a system similar to headphones for ears, also making it possible to record sweat rate, pH and lactate. In another study, nanoparticles have been used, built into a normal filter base, that was designed to measure sweat rate, and sweat loss.

When these contractions are small enough with sufficient autonomy, they can be used to control athletes during sport. Of course, there are protocols for treatments against heatstroke, but the key to the problem revolves around seeking detection measures to stop it happening.

Bibliography