12 meses
1 inyección

1 ÚNICA INYECCIÓN que ha demostrado
12 MESES DE ALIVIO significativo del dolor
en pacientes con osteoartritis de rodilla

Archivos de medicina del deporte
Órgano de expresión de la Sociedad Española de Medicina del Deporte

ORINALES
Stretching exercises accompanied or not with music, reduce the stress level of pre-college student
Heart rate deflection point determined by Dmax method is reliable in recreationally-trained runners
Influence of ladder climbing exercise on bone of rats induced to osteoporosis and immobilization
Análisis semilongitudinal de la condición física en adolescentes madrileños

REVISIONES
La vibración como terapia preventiva y tratamiento del dolor muscular tardío. Una revisión sistemática
La cafeína y su efecto ergogénico en el deporte (primera parte)
Vibration as preventive therapy and treatment of delayed onset muscle soreness. A systematic review

Claudia Carrasco Legleu, Ramón Candia-Luján, Lidia Guillermina De León Fierro, Ofelia Urita Sánchez, Kevin F. Candia-Sosa
Facultad de Ciencias de la Cultura Física, Universidad Autónoma de Chihuahua, México.

Summary
In recent years the vibration therapy has received great importance in the treatment of delayed onset muscle soreness. Pain that occurs between 12 and 24 hours after an unaccustomed exercise. So the aim of the present study was to determine the preventive and therapeutic effect of vibrations on delayed onset muscle soreness. Conducted a searching in PubMed, Web of Science, Scopus, SportDiscus, PEDro and Cochrane Library databases, for which keywords were used; delayed onset muscle soreness and vibration. 403 articles were identified in the different databases, 10 were selected that met the criteria for review. Besides, 6 other items that were identified by the search engine Google Scholar were included, in all cases retrieved in full text. 75% of the articles have less than 5 years of having been published. Kleber Burton index, measured by the median, was 2.5 years. The average frequency applied to the participants was 37.4 ± 15 Hz, with a displacement of the platform 3.7 ± 2.3 mm and a length of 9.4 ± 8.8 min. While the average methodological quality of the studies was 4.9 ± 1.1 After analyzing the selected studies it was concluded that the topic is present and that the vibrations are effective both in the prevention and treatment of delayed onset muscle soreness.

Key words: Delayed onset muscle soreness. Eccentric exercise. Vibration therapy. Frequency. Displacement.

La vibración como terapia preventiva y tratamiento del dolor muscular tardío. Una revisión sistemática

Resumen
En años recientes la terapia vibratoria ha recibido gran importancia en el tratamiento del dolor muscular tardío. Dolor que se presenta entre 12 y 24 horas después de haber realizado un ejercicio desacostumbrado. Por lo que el presente estudio tuvo como objetivo determinar el efecto preventivo y terapéutico de las vibraciones sobre el dolor muscular tardío. Se llevó a cabo una búsqueda en las bases de datos PubMed, Web of Science, Scopus, SportDiscus, PEDro y Cochrane Library, para lo cual se usaron las palabras clave; delayed onset muscular soreness and vibration. 403 artículos identificados en las diferentes bases de datos se seleccionaron 10 que cumplieron con los criterios establecidos para la revisión. Además de los anteriores, se incluyeron otros 6 artículos que se identificaron por medio del buscador Google Académico, en todos los casos se recuperó en artículo en texto completo. El 75% de los artículos tienen menos de 5 años de haber sido publicados. El índice de Burton Kleber, medido por medio de la mediana, fue de 2.5 años. El promedio de la frecuencia aplicada a los sujetos de los estudios fue de 37.4 ± 15 Hz, con un desplazamiento de la plataforma de 3.7 ± 2.3 mm y una duración de 9.4 ± 8.8 min. Mientras que el promedio de la calidad metodológica de los estudios fue de 4.9 ± 1.1 Después de analizar los estudios seleccionados se concluyó que el tema es actual y que las vibraciones son efectivas tanto en la prevención como en el tratamiento del dolor muscular tardío.

Correspondence: Ramón Candia Luján
E-mail: rcandia@uach.mx
Introduction

Delays onset muscle soreness (DOMS) is considered to be a transitory effect of intense or unaccustomed exercise. Armstrong defines DOMS as the feeling of discomfort or pain that occurs in the skeletal muscle after performing unaccustomed physical exercise. This pain appears between eight and twelve hours after performing unaccustomed physical exercise, with the greatest intensity appearing between 24 and 72 hours after, with a possible duration of between 5 and 7 days. Pain that gets worse after performing exercises with greater eccentric content. Examples of activities that include this type of contraction are walking downhill, and opposing the pull of gravity while lowering a weight or object.

Over a hundred years have passed since Hough first distinguished between pain that appears during exercise and pain that appears the following day, explaining the latter as a result of muscle damage produced during muscle contractions. Despite the fact that the mechanism that produces this pain is still not known, over the years diverse theories have been developed that aim to explain this phenomenon. In 1983 while reviewing the issue, Francis defined four theories; lactic acid, muscle spasm, tissue tears and damage to the connective tissue. In a later review, Dierking and Bemben added to these four previous theories, with that of cell inflammation. Finally, Cheung et al. also carried out a review of the DOMS producing mechanisms. As well as the previous theories, they included the enzyme efflux theory. However, they also mention that the DOMS producing mechanism cannot be explained with just one theory, but rather by the sequence of events that combine the muscle damage, enzyme efflux and inflammation theories. Figure 1 shows the sequence of events that produces DOMS proposed by Foschini et al.

Due to the discomfort caused by DOMS, both for those that perform regular physical exercise as well as for sedentary people, studies have been done in which diverse strategies have been assessed to counteract this pain, among which include: anti-inflammatories, anti-oxidants, physical therapies, among which vibrational therapy has recently gathered significant importance.

In view of all the foregoing, the following question arises: is the use of vibrational therapy effective in preventing and treating delayed onset muscle soreness?

In response to the question, the following objective was proposed: carry out a systematic review of the main databases in the field of health to establish the effectiveness of vibrational therapy in both preventing and treating delayed onset muscle soreness.

Vibrational therapy

Vibrational therapy is given using mechanised stimuli characterised by an oscillating movement determined by the extent, number and acceleration of the oscillations. Some of the acute effects of the vibrations on the body are increased oxygen consumption, increased muscle temperature and blood flow, which may have an influence on counteracting DOMS.

In accordance with Albasini et al., therapy using vibrations dates back to Ancient Greece. However, over recent years it has grown in popularity as an alternative way to develop strength, power and flexibility, as well as coordination. This explains why it is now commonplace to find vibrating platforms in gyms, rehabilitation and medical centres.

Although the first research carried out on the use of vibrations was done so from the perspective of their negative effects on the health. Today, the focus has changed and studies are mainly conducted on the development of muscle strength on diverse populations.

Figure 1. Possible mechanism of delayed onset muscle soreness proposed by Foschini et al.
Material and method

Article search strategy

The search for the articles was performed on the following databases: Pubmed, Web Of Science (WOS), Scopus, Physiotherapy Evidence Database (PEDro), Cochrane Library and SportDiscus. The Google Scholar search engine was used to identify studies that were found in databases other than those consulted. In terms of the search details, below are the terms used for each database PubMed: (“vibration” [MeSH Terms] OR “vibration”[All Fields]) AND “delayed” [All Fields] AND onset [All Fields] AND (“myalgia” [MeSH Terms] OR “myalgia” [All Fields] OR (“muscle” [All Fields] AND “Soreness” [All Fields] OR “Muscle Soreness” [All Fields])), WOS: “vibration delayed onset muscle soreness” (Tema), Scopus; [All Fields], PEDro; (simple search), Cochrane Library; [All Text] and SportDiscus; vibration (TX Complete text) AND delayed onset muscle soreness (TX Complete text).

The criteria for the selection of studies: one of the variables measured in the study must be DOMS, original research, published in peer review journals, in English, therapy applied to humans, no restriction on the publication date. The first search was performed in July 2015 and the second in January 2016.

Assessment of the methodological quality and study selection

The quality of the studies was determined based on the PEDro scale. Of all the studies included in this review, six were qualified in the PEDro database. The rest were all analysed by two independent researchers. In the event of discrepancy, the article was assessed by a third researcher. Regarding the selection of the first studies, the title was read, if it included a link between delayed onset muscle soreness and vibrational therapy, the abstract was read. If it met all selection criteria, the entire text was recovered and was included in the review.

Resultados

Figure 2 displays the selection process for the studies. Of all the studies identified, 16 met the selection criteria, of which one is a case study and the others are experimental. The methodological quality of the studies was 4.9 ± 1.1 on the PEDro scale from 1 to 10. No methodological quality assessment was performed on the case study. In terms of obsolescence, the Pierce index (percentage of studies performed less than 5 years ago) was 75%, whilst the Burton Kleber index, measured with the median, was 2.5 years. Table 1 displays the summary of the studies analysed and it can be observed that the majority were published less than five years ago.

The average frequency used in the studies in this review was 37.4 ± 15 Hz (range from 5 to 73). Regarding the movement of the platform, the average was 3.7 ± 2.3 mm (range from 0.5 to 8) and the duration was 9.4 ± 8.8 min (range from 1 to 30).

Study summary

One of the first studies dealing with DOMS with vibrational therapy was performed by Koeda et al.17 in 2003, in which a comparison was carried out between the application of vibrational therapy on two separate occasions: on 8 subjects it was applied immediately and on 8 others it was applied two days after performing exercise. The DOMS reduced during the arm flex with the application of vibrations two days after the exercise. Bakhthary et al.18 applied vibrations before the subjects performed the exercise; within their conclusions they reported that vibrations can prevent and control DOMS. Broadbent et al.19 found that the subjects that were given vibrational therapy for five days after running downhill for forty-five minutes reduced DOMS and the interleukins-6 in great measure compared to subjects from the control group. Rhea et al.20 carried out a study that aimed to analyse the effectiveness of vibrations, massage and stretching on reducing muscle pain. They reported that including whole-body vibrations in recovery is effective in reducing muscle pain.

Most of the studies performed within the past 5 years aimed to establish the effectiveness of vibrations on DOMS. In 2011, Lau and Nosaka21 concluded that vibratory therapy was an effective intervention in reducing DOMS and in recovering the range of arm movements after undergoing a session of eccentric exercises. In the same year, Aminian-Far et al.22 performed a study in which they aimed to research the acute effect of vibrational therapy applied before exercise and the prevention of DOMS. The experimental group revealed a reduction in DOMS symptoms compared to the control group. In a case report with a similar objective to the previous study, with a healthy subject and...
Table 1. Summary of the studies of the effects of vibrations on DOMS.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Sample</th>
<th>DOMS production</th>
<th>Other variable measurements</th>
<th>Measurement of pain after exercise</th>
<th>Effect on DOMS</th>
<th>Application and duration of the vibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koeda et al. 2003</td>
<td>24 subjects</td>
<td>Flex of the elbow until exhaustion</td>
<td>ROM, blood flow, arm circumference</td>
<td>0.2 and 7 days</td>
<td>The pain in the total passive flex diminished with the application of vibrations two days later</td>
<td>20 minutes after exercise and two days after</td>
</tr>
<tr>
<td>Bakhtiyari et al. 2007</td>
<td>25 EXP 25 CONT</td>
<td>Treadmill sloping down at 10°</td>
<td>Isometric strength, CK</td>
<td>1 day</td>
<td>Greatest DOMS in the group not treated</td>
<td>One minute before exercise</td>
</tr>
<tr>
<td>Broadbent et al. 2008</td>
<td>15 EXP 14 CONT</td>
<td>40 minutes on the treadmill sloping down by 10°</td>
<td>Inflammatory indicators and CK</td>
<td>24,48,72,96 and 120 h</td>
<td>Less DOMS 96 hours later in the calves of the treated subjects</td>
<td>3 minutes during recovery</td>
</tr>
<tr>
<td>Rhea et al. 2009</td>
<td>16 subjects</td>
<td>4 x 8-10 squats, leg extension and curl, heel lift and dead weight. 10 40-yard sprints.</td>
<td>12,24,48 and 72 h</td>
<td></td>
<td>Less muscular pain in the group treated with vibrations</td>
<td>Two sessions of 6 minutes per day for three days</td>
</tr>
<tr>
<td>Aminian-Far et al. 2011</td>
<td>15 EXP 17 CONT</td>
<td>6 x 10 ECC knee extensions</td>
<td>Thigh circumference, muscle strength and CK</td>
<td>1,2,3,4,7 and 14 days</td>
<td>Less DOMS in the experimental group after 24 and 48h</td>
<td>60 seconds before exercise</td>
</tr>
<tr>
<td>Lau y Nosaka 2011</td>
<td>15 subjects</td>
<td>10 series of 6 reps. ECC elbow flexes</td>
<td>ROM, arm circumference, CK</td>
<td>0.1 h,1,2,3,4,5 and 7 days</td>
<td>Less muscular pain in the group treated on the second day</td>
<td>30 minutes after exercise on 1st, 2nd, 3rd and 4th day</td>
</tr>
<tr>
<td>Pinto et al. 2011</td>
<td>1 subject</td>
<td>Running</td>
<td>Difficulty running and limitation of movements</td>
<td>0 and 24</td>
<td>Pain reduced after applying the therapy</td>
<td>3 minutes after exercise and 24 h</td>
</tr>
<tr>
<td>Mohammadi y Sahebazamani 2012</td>
<td>15 EXP 15 CONT</td>
<td>5 series of 10 reps of arm flexes</td>
<td>Arm circumference and ROM</td>
<td>0.24,48 and 72 and 96 h</td>
<td>Less muscular pain in the subjects of the treated group</td>
<td>One minute after exercise</td>
</tr>
<tr>
<td>Kamandani et al. 2013</td>
<td>10 EXP 10 CONT</td>
<td>25 min running on a treadmill sloping down by 5°</td>
<td>CK</td>
<td>24 h</td>
<td>Less pain on 15 cm pressure of the knee cap in the experimental group</td>
<td>3 minutes before exercise</td>
</tr>
<tr>
<td>Xanthos et al. 2013</td>
<td>7 EXP 6 CONT</td>
<td>60 minutes walking on a treadmill sloping down by 13°</td>
<td>Muscular power, gait analysis and CK</td>
<td>0,1,2,4 and 7 days</td>
<td>No difference in the DOMS between the vibration and control groups</td>
<td>10 series of 1 minute after exercise, 1,2,3 and 4 days</td>
</tr>
<tr>
<td>Wheeler et al. 2013</td>
<td>10 EXP 10 CONT</td>
<td>3 x 10 strides with dumbbells</td>
<td>Power and flexibility</td>
<td>Immediately</td>
<td>No difference in the DOMS between groups</td>
<td>10 minutes between assessments</td>
</tr>
<tr>
<td>Imtiyaz et al. 2014</td>
<td>15 massage 15 EXP 15 CONT</td>
<td>30 reps. Arm ECC</td>
<td>ROM, isometric strength, maximum strength, lactate dehydrogenase and CK</td>
<td>0.24,48 and 72 h</td>
<td>Both massage and vibration reduced the DOMS</td>
<td>For 5 minutes before exercise</td>
</tr>
<tr>
<td>Dabbs et al. 2014</td>
<td>27 women</td>
<td>4 series until the split squats fail</td>
<td>Vertical jump, peak power strength, reaction strength upon stepping and muscle activation</td>
<td>0.24,48 and 72 h</td>
<td>Less muscular pain in the experimental group after 72 h</td>
<td>2 series of 30 seconds before assessments</td>
</tr>
<tr>
<td>Dabbs et al. 2015</td>
<td>16 EXP 14 CONT</td>
<td>4 series until the split squats fail</td>
<td>ROM and thigh circumference</td>
<td>0.24,48 and 72 h</td>
<td>Vibrational therapy did not help alleviate the DOMS</td>
<td>2 series of 30 seconds before assessments</td>
</tr>
<tr>
<td>Fuller et al. 2015</td>
<td>25 massage 25 EXP</td>
<td>100 maximum ECC of knee extensions</td>
<td>Isometric torque, CK, serum myoglobin and inflammation</td>
<td>0.24,48,72 and 168 h</td>
<td>There was no pain difference between two treatment types</td>
<td>20-minute sessions twice a day for seven consecutive days</td>
</tr>
<tr>
<td>Nepocatych et al. 2015</td>
<td>8 active males</td>
<td>3 series of squats until fatigued</td>
<td>Peak power and anaerobic capacity</td>
<td>24,48 and 72 h</td>
<td>No significant benefit with the application of therapy</td>
<td>For 10 minutes after the test</td>
</tr>
</tbody>
</table>

CK: Creatine Kinase; CONT: Control; DOMS: Delayed Onset Muscle Soreness; ECC: Eccentric actions; EXP: Experimental; ROM: Range of movement.
following a run, Pinto et al.23 concluded that the inclusion of an acute treatment protocol with a low-frequency vibratory platform with the subject in different positions, reduces DOMS.

In 2012, Mohammadi and Sahebazamani24 analysed the preventive effect of vibrations against some functional markers of DOMS in a group of young people. Among the results, they mention that training with vibrations displays the positive effects on the range of movement, DOMS and circumference of the limb treated.

In 2013, Kamandani et al25 also used a treadmill to cause DOMS, but downhill. They discovered that subjects that had vibrations applied before running suffered less DOMS than the control group. Xanthos et al26 also compared vibrations with passive stretching and light exercise on a stationary bicycle as recovery methods after walking backwards on a treadmill for 60 minutes. They concluded that the vibratory therapy they performed was not recommended after DOMS producing exercise. Wheeler and Jacobson27 compared vibrations with light exercise and the effect on DOMS, flexibility and muscle power. Their findings revealed that the two recovery types were equally as effective in treating the variables mentioned.

Imtiyaz et al.28 compared the effect of vibratory therapy with massage and the effect on DOMS. They found that both therapies were equally as effective in its prevention.

Recently, in 2014, Dabbs et al.29 performed a study on a group of subjects, carrying out squats on a flat surface whilst the other group did the same on a vibratory surface. They did not find a difference in the DOMS between the groups participating in the study. This same group of researchers30 evaluated the effect of vibrations on the whole body over a short time on DOMS after performing high intensity exercises. They concluded that treatment with vibrations did not alleviate DOMS. Fuller et al.31 also compared vibratory therapy with sports massage and stretching applied after performing exercises and their effects on DOMS. The application of therapy (25 subjects per group) was performed over seven days following the exercise. They found that vibratory therapy was more effective than massage in alleviating DOMS in untrained men.

In a design study, Nepocatych and Balilions32 cross-compared the vibrational therapy with and without ice applied to the lower limbs and the effect on different performance variables. Regarding DOMS, the authors concluded that the therapy did not provide significant benefits to recovery.

Discussion

In accordance with the methodological quality scale, the studies included in the review are categorised as regular. Though due to the difficulty of administering a placebo in this type of study33, assessing the methodological quality should be done with eight points and not ten as it is currently. Furthermore, in this respect, the comparison with passive groups is not considered valid, as the groups undergoing the vibrational therapy experience extra activation or muscle work, a factor that is absent from the control groups34.

In terms of obsolescence, it is observed that both the issue and the articles are valid, as the majority (three quarters) of them have been published within the past five years.

Regarding the magnitude and movement, the average (37.4 ± 15 Hz and 3.7 ± 2.3 mm, respectively) coincides with values habitually used in studies seeking improvements in flexibility and proprioception, as well as relaxation and muscle strengthening35. This intensity promotes different metabolic responses, including an increased heart rate and blood flow to muscles36, which would be the elements responsible for reducing DOMS. In terms of the platform movement, the average with which subjects worked allowed them to maintain contact with the platform throughout the entire training session37. With regards to the duration of vibration application, the average (9.4 ± 8.8 min) coincides with Rauch38 who mentions that a typical session should last for approximately 9 minutes.

Although the average values of the studies coincide with those of the authors mentioned39-41, which revealed positive effects in different aspects, when we look at the range we can observe that it is very wide and greatly variable, making it difficult to analyse these studies.

In this search, an update on the issue was encountered39, which included 3 studies that aimed to review the role of vibrational therapy in the prevention of DOMS. They concluded that vibratory therapy, as well as improving physical performance, helped prevent DOMS. A review on the issue was also found42 and just as in this study, it was revealed that vibratory therapy is effective on both a preventive and therapeutic level when treating DOMS. In their brief review, Kosar et al.43 mention that research suggests that vibrations are considered to be a promising strategy in alleviating muscle pain.

Conclusions

In accordance with the analysis of the studies included in this review, it can be concluded that vibrational therapy is effective in both preventing and treating DOMS, though more studies are required in order to establish the optimum duration, frequency and movements for the therapy.

DOMS is often the reason why people that start practising physical activity give it up, and why athletes are affected on a training level, which is why aside from traditional therapies, vibrations can be included as an effective preventive method as well as a treatment to alleviate symptoms.

References

Vibration as preventive therapy and treatment of delayed onset muscle soreness. A systematic review

Caffeine and its ergogenic effect in sport (first part)

Antonio García Moreno
Universidad Pablo de Olavide. Sevilla.

Summary
The effects of caffeine on the human body have been studied for some time and much is now known about its characteristics. In the sports world, caffeine is one of the most popular ergogenic aids and is widely used by coaches and athletes. Given its importance, in this paper we analyze the ergogenic effects of caffeine on athletic performance and related actions, through a review of the latest scientific literature. We selected studies that included well-trained subjects performing a physical activity that reflects current practices in sport. Close attention was given to the methodology used, including the dose, timing and administration method of the caffeine, with the aim of establishing an updated guide to caffeine as an ergogenic aid in sport. The results show there are a variety of studies that have investigated the effects of caffeine on exercise using different methodologies, making it impossible to reach a general assumption. Nevertheless, we are able to draw valuable conclusions including the clear trend towards the effectiveness of caffeine as an ergogenic aid in certain situations, new findings that deal with the use of caffeine on consecutive days of physical activity, the best time of day to take the substance, the strategic management of caffeine to counteract sleep deprivation, and in what direction the latest research trends in this field are moving.

Key words:

La cafeína y su efecto ergogénico en el deporte (primera parte)

Resumen
Los efectos de la cafeína sobre el organismo humano han sido estudiados desde hace tiempo y, a día de hoy, ya conocemos gran parte de sus características. En el mundo del deporte, la cafeína es una de las ayudas ergogénicas más populares y empleadas por entrenadores y atletas. Debido a su importancia, en este trabajo nos hemos propuesto el objetivo de analizar los efectos ergogénicos de la cafeína sobre el rendimiento deportivo y todo lo que rodea a esta acción, a través de una revisión de la literatura científica más actual. Hemos seleccionado aquellos estudios que incluyan sujetos bien entrenados realizando una actividad física que refleje las actuales prácticas en el deporte, prestando mucha atención a la metodología empleada, esto es la dosis, el momento y la forma de administración de la cafeína, para conseguir alcanzar nuestra meta de constituir una guía actualizada sobre todo lo que rodea a la cafeína como ayuda ergogénica en el deporte. Los resultados obtenidos nos han mostrado una gran variedad de estudios que han investigado acerca de la cafeína y el ejercicio físico siguiendo diferentes metodologías, lo que provoca una imposibilidad de generalizar sobre el asunto. Sin embargo, hemos podido extraer valiosas conclusiones como la clara tendencia hacia la efectividad de la cafeína como ayuda ergogénica en situaciones determinadas, nuevos hallazgos que tienen que ver con el uso de la cafeína en días consecutivos de actividad física, el mejor momento del día para el consumo de la sustancia o la administración estratégica de cafeína para contrarrestar la falta de sueño, y hacia dónde se dirigen las últimas tendencias en investigación dentro de la materia.

Palabras clave:

Correspondence: Antonio García Moreno
E-mail: antoniogm91@hotmail.com
Introduction

This review comes a decade after caffeine was struck off the World Anti-Doping Agency’s (WADA) prohibited list. One of the reasons why WADA removed caffeine from the list of banned substances was that many experts considered it pervasive in a wide variety of drinks and food, meaning that athletes could be sanctioned for social consumption or dietary caffeine. Caffeine is also metabolised to varying degrees in different individuals and, therefore, the concentrations found in urine may vary considerably and not always correlate with the dose ingested.

The ergogenic effect of caffeine on human performance is fairly widely accepted. The most current reviews of the subject indicate that caffeine helps to improve performance in many sporting situations, depending on a number of variables, including exercise intensity, the number of doses administered, habituation and the level of training of the subjects.

Physiologically, the action of caffeine in the body is difficult to determine to any degree of precision due to its wide distribution throughout the tissues of the body. It is largely believed that caffeine acts as a stimulant of the central nervous system; however, the glycogen-saving effect, the ability to increase fatty acid mobilization and induce the release of catecholamines, as well as direct effects on muscles, have been verified as mechanisms which contribute to the ergogenic effect of the substance.

Enhanced performance in endurance exercises can be isolated as the thread common to most of the studies which have investigated the matter. Although conflicting results do exist to a certain extent, the general conclusion would seem to be that both small doses of caffeine and moderate-to-high doses have beneficial effects on aerobic activities.

However, there is less consensus when it comes to anaerobic activities and exercises based on strength and power. The evidence provided in some studies suggests that caffeine can directly enhance skeletal muscle force, work and power, which may well contribute to improved overall performance in exercises of this kind. Other research, however, has obtained very different results which deny this hypothesis.

The same is true, albeit on a smaller scale, of studies of real training or competition situations focusing on different sports. Although the study of the ergogenic effects of caffeine in situ during real events comes closest to reality, the idiosyncratic nature of these events means that they take place in extremely open and variable environments, exposing them to a wide range of outcomes which depend on whether we are dealing with a team sport or an individual sport, or on the techniques and tactics employed by the players, among other factors. Nevertheless, a large proportion of the studies conducted in the field conclude that caffeine is ergogenically effective in sport.

In order to understand why such disparate results are obtained, it is necessary to appreciate both the variety of methodological approaches used for studies of this kind and the difficulty involved in conducting research in this field, the sum of these two factors lying at the root of very different sets of results.

The experiments conducted have employed a very wide range of methodologies: everything from low doses of caffeine (less than 3 mg/kg) to high doses (over 9 mg/kg), with the consequent bearing on the mental and physiological response of the subject; administration of the substance by means of coffee, other drinks or capsules, and even other methods, leading to different rates of caffeine absorption in the body; and ingestion of caffeine at different times with respect to the physical exercise performed, ranging from minutes to hours before the start of the activity, or even during exertion itself, meaning that the physical activity is carried out with differing levels of caffeine in the body. Attention should also be paid to the type of protocol designed (whether it coincides with the reality of the sport or exercise, the level of training of the subjects or how familiar they are with the protocol of the activity), since this will affect the subjects’ ultimate performance.

The complexity involved in conducting studies of this kind is reflected in the wide range of factors which can affect and/or compromise research results. The most important factors to bear in mind are: the degree of habituation of the participants to the substance, the side effects of caffeine, the effects of withdrawal from the substance, the intensity of the exercise performed and the different degree to which each individual metabolises caffeine.

So, although the effectiveness of caffeine as a performance enhancer has been widely proven, the discrepancies that have emerged make it very difficult to evaluate the specific action of caffeine precisely.

This study aims to solve this problem by reviewing the latest studies on the ergogenic effects of caffeine on sport in order to provide the members of the world of sport with a useful tool through which they can consult the characteristics of caffeine and its ergogenic effects on different sporting situations, how and when it can be administered, the factors which must be controlled and, ultimately, an updated, scientifically thorough guide on everything about caffeine as an ergogenic aid in sport.

The new trends in research on the subject are also reviewed. These include:

- The administration of caffeine in alternative forms.
- The effect of caffeine on performance in adverse environmental conditions.
- The effect of caffeine on performance in sports people who are habitual consumers as opposed to those not habituated to the substance.
- The effect of caffeine on reaction time.
- The effect of caffeine on athletes’ cognitive and perceptual dimensions.
- The side effects of caffeine consumption.
Finally, some of the more original results of the latest research, yet to be covered in any other review of caffeine in sport, are showcased, such as:

− The effect of caffeine on performance depending on the time of day.
− The effect of caffeine on performance in exercise carried out on consecutive days.
− The effect of caffeine on the recovery period and delayed onset muscle soreness (DOMS).
− The effect of caffeine on performance in a state of sleep deprivation.

Results and discussion of the studies

The ergogenic effect of caffeine on aerobic exercise

The relationship between aerobic exercise and caffeine is one of the most studied subjects within the scientific field of ergogenic aids in sport. Two studies employed a similar protocol but different methodologies to investigate the effect of caffeine on endurance in well-trained cyclists. The trial consisted of an initial warm-up stage on a cycloergometer at 60% of maximum oxygen consumption (VO2max) in which the subjects in the first study pedalled for 60 minutes and those in the second study pedalled for 105 minutes, followed by a second stage consisting of a 40-kilometre (km) time trial to be carried out in the shortest possible time. In the first study, the cyclists ingested 3 mg/kg of caffeine in capsule form 1 hour before the start of the trial, while the cyclists in the second study took a solution of glucose and carbohydrates with 5.3 mg/kg of caffeine at the beginning of the trial and at 15-minute intervals during the first stage. In both studies, the cyclists improved their performance in the time trial after the intake of caffeine. Another study conducted with cyclists showed that the intake of 6 mg/kg of caffeine 1 hour before exercise improved performance in a 1-hour trial, the participants covering greater distances with the administration of caffeine than they did with the placebo. In the same vein of research, Norwegian researchers designed a trial for first-class cross-country skiers which consisted of covering 8 km in the shortest time possible on a ski simulator. The participants were given a concentrate sports drink containing 6 mg/kg of caffeine or placebo 75 minutes before performing the test. Caffeine significantly decreased the time it took the participants to complete the test compared to the placebo.

These studies demonstrate that low and moderate doses of caffeine administered at different times improve performance in endurance tests, thereby supporting the effectiveness of caffeine as an ergogenic supplement. This is possibly due, as suggested by the Norwegian study, to a drop in the exertion perceived as a result of caffeine, allowing the subject to exercise with greater intensity and a higher heart rate.

However, a 2005 study with top male long-distance runners concluded that a dose of 5 mg/kg of caffeine 60 minutes before activity did not effectively improve performance in the multi-stage fitness test. The researchers did not control the level of habituation of the subjects to the substance or whether caffeine intake had produced any side effects detrimental to the athletes during the trial, so the reason for the results is unknown. Another study conducted with trained athletes, however, concluded that the administration of 6 mg/kg of caffeine 60 minutes before exercise led to a significant improvement in the performance of the participants in a test consisting of intermittent, high intensity, prolonged exercise which combined flat-out sprints with active recovery periods in two 36-minutes phases with 10 minutes of passive rest in between. So, contradictory results...
can be observed in similar subjects carrying out aerobic exercise after receiving very similar doses at the same time before starting.

Therefore, although the effectiveness of caffeine as an ergogenic aid in endurance tests can be considered fairly well proven and its use would appear to improve the performance of trained subjects, it is necessary to control the factors surrounding the administration of the substance in order to achieve the desired effect.

The ergogenic effect of caffeine on sports performance

Much of the research into the effects of caffeine on performance is carried out in laboratory conditions and although many studies try to reproduce the parameters of actually doing the sport in question, it is not possible to capture the true mood of performing the activity in real conditions. The researchers are aware of the complexity of controlling studies in the actual field, where the atmosphere and the way in which the sport is performed can vary widely, and even factors such as tactics or strategy, level of motivation, etc. can affect performance in individual and team sports alike. Even so, the number of studies in situ investigating athletic performance during training and competitions under the effects of caffeine has increased over recent years.

Individual sports

Athletics

One study16 looked into the effect of ingesting 3 mg/kg of caffeine 1 hour before running 8 km on a track on well-trained competitive runners. The results showed a faster time for the 8 km after the ingestion of caffeine compared to the placebo. The same effects were observed in another study17 on trained runners who consumed 5 mg/kg of caffeine 1 hour before running 5 km. In both studies, the athletes improved their performance when they took the caffeine supplement (of 3 and 5 mg/kg) 1 hour before testing commenced.

Shot put

A study by Bellar et al18 used university shot putters to observe the effect of chewing gum with 100 mg of caffeine on 6 standard throws. 20 minutes before the round of throws, the subjects chewed the gum for 5 minutes and then removed it. The caffeine significantly increased the distances of the throws, thereby demonstrating that a low dose of 100 mg of the substance is sufficient to improve the performance of shot putters.

Swimming

Vandenbogaerde and Hopkins19 conducted a study with 9 top swimmers which measured their performance in their specific specialties in training and competitions both in the morning and in the evening. The swimmers took 100 mg of caffeine 75 minutes before beginning and the results showed that their performance was better in the afternoon than in the morning, better in competitions than in training and better with the use of caffeine than in controls. A low dose of caffeine, such as 100 mg, can improve performance in swimmers in both competitions and training, which can prove useful when it comes to scheduling use of the substance when desired.

Cycling

A study by Bortolotti et al20 selected 13 well-trained racing cyclists to do a time trial on a 20-km circuit designed for the occasion. Cyclists took capsules containing 6 mg/kg of caffeine or placebo 1 hour before the start of the test, but the results with caffeine and with the placebo were similar. The 6 mg/kg dose did not improve the performance of the cyclists, but the freedom of participants to choose their cadence and gears, together with the design of the circuit, which included areas with steep slopes which made the test harder, led the athletes to choose different strategies to confront the course. This may explain the results of this study20, since two other studies21,22 looked into the ergogenic effect of caffeine on trained cyclists but this time using cycloergometers. In a study by Kilding et al23, cyclists did a 3-km time trial after taking 3 mg/kg of caffeine 1 hour before starting. In another study conducted by McNaughton et al24, the participants pedalled to cover the greatest possible distance in 1 hour with the aid of 6 mg/kg of caffeine administered 1 hour before the test. In both studies, the caffeine improved the cyclists’ performance: in the first study23, the participants who took caffeine completed the 3 km in less time compared to those who took the placebo, whereas in the second study24, the cyclists who took caffeine covered greater distances in one hour compared to those only taking the placebo. So it would seem that caffeine improves performance in cyclists when trials are conducted in laboratory environments, but when trials are conducted on open circuits, other variables which can affect the result come into play.

Rowing

We did not find any tests centring on rowing conducted in real conditions. However, three studies21,22,24 did conduct research using the same protocol: well-trained rowers completed a 2,000-metre test in the shortest possible time on ergometers. In the study by Scott et al21, the athletes took 100 mg of caffeine in an isotonic carbohydrate gel 10 minutes before the test and the results showed a significant improvement in their times. Carr et al25 made rowers take 6 mg/kg of caffeine in capsule form 30 minutes before the test and the performance of the athletes also improved significantly over the 2,000 metres. Skinner et al’s study26 combined 3 different doses of caffeine: 2, 4 and 6 mg/kg of the substance were administered to the rowers 60 minutes before the test. However, no significant differences were observed in the performances of the rowers taking the different doses. This test differed from the other two in that the subjects ate a standard light meal containing 2 g/kg of carbohydrates beforehand. The concentration of caffeine in blood plasma at the start of the test was significantly lower in the subjects of Skinner et al’s study26 than they were in the other studies using the same dose21,22, which may explain the lack of improvement in performance. Attention should, therefore, be paid to food intake when administering caffeine.
supplements as it may alter the levels of the substance in plasma and affect the performance of athletes. In view of these studies, we can say that both low doses (100 mg) and moderate doses (6 mg/kg) of caffeine administered before a 2,000-metre test on ergometer can improve a rower’s performance.

Badminton

Two studies proved the effectiveness of caffeine on performance in competitive badminton players. In the first study25, the players ingested 3 mg/kg of caffeine in an energy drink 60 minutes before doing the trial; this consisted of a series of tests to measure jumping power, followed by a 45-minute badminton match. After the intake of caffeine, the players jumped higher and with greater maximum power when performing counter-movement jumps and squat jumps, and the total number of impacts during the match increased. Similar results were obtained in Clarke and Duncan’s study26, in which the participants faced 3 tests simulating specific features of badminton: coincidence-anticipation timing, serve accuracy and choice reaction-time. The players took a concentrated aqueous solution containing carbohydrates and 4 mg/kg of caffeine 60 minutes before and also during the tests which substantially improved their performance in the 3 tests in comparison with the placebo. So caffeine supplements containing between 3 and 4 mg/kg taken in an energy or carbohydrate drink 1 hour before and during sessions would seem to improve competitive badminton players’ patterns of activity during games.

Tennis

A study similar to that of Abian et al22 was conducted with top junior tennis players. In this case27, a set of tests consisting of measuring maximum grip strength with both hands, the speed of 3 tennis serves and speed in 8 series of 15-metre sprints one hour after ingesting an energy drink with 3 mg/kg of caffeine were designed. Following completion of the tests, the players rested for 15 minutes and then played a best-of-three-sets single match against a similar opponent. The caffeine increased the players’ maximum grip strength, their sprint speed in the test and the intensity and number of sprints they did during the match compared to the placebo. They also tended to win a higher percentage of points from serves with the intake of caffeine in comparison with the placebo. Horney et al28 administered the same dose of caffeine, 3 mg/kg, in capsule form to trained tennis players 30 minutes before a simulated tennis match against a ball machine lasting 2 hours and 40 minutes. The length of the match induced significant decreases in playing capabilities due to the great physiological demands made of the players, but the caffeine supplement partially attenuated the effects of fatigue and increased serve speed towards the end of the game compared to the placebo. A small dose of caffeine, 3 mg/kg, therefore, is enough to improve aspects of performance in trained tennis players, be it administered in energy-drink form 60 minutes before exercise or in gelatine-capsule form 30 minutes beforehand.

Judo

In 2014 an experiment on six trained male judokas with competition experience was published29. The sportsmen had to complete a 5-day rapid weight loss course. After this period, the participants spent 4 hours recovering, eating and rehydrating, and took a 6-mg/kg caffeine capsule in the third hour. At the end of the recovery time, the judokas fought 3 Senior Judo Fitness Test matches to simulate the characteristics of a competition. There was no difference in the number of throws in the fights between athletes taking caffeine and the placebo, but a higher blood lactate level and lower rated perceived exertion were observed with caffeine compared to the placebo. So caffeine is able to reduce the sensation of fatigue and speed up lactic anaerobic metabolism without altering the performance of judokas in competition conditions after a rapid weight loss course. Analysing the results, the important role of technique and one’s opponent in judo should be taken into account, because even when a judoka’s physiological dimensions are improved, if the opponent is technically or physically superior, then he/she is more likely to win. However, this study has laid the foundations for cognitive and physiological improvements in competitive judokas, which can serve as a guide for future research into the relationship between caffeine and judo.

Fencing

Bottoms et al30 conducted a study with 11 competition-level fencers in which the participants completed 2 rounds of tests consisting of a reaction-time test and a test of skills specific to fencing; the first tests 30 minutes before a fencing competition simulation consisting of 6 fights and lasting 60 minutes, and the second set of tests at the end of the simulation. The subjects ingested 3 mg/kg of caffeine or placebo in fruit juice after the first round of tests. There were no significant differences in reaction time between the fencers taking the caffeine and those taking the placebo, but the former tended to make fewer mistakes than the latter in the skills test. The caffeine also produced significantly lower perceived fatigue, so the findings suggest that the low dose of 3 mg/kg of caffeine maintains fencing skills while decreasing the degree of tiredness fencers perceive. This supplement does not help to improve athletes’ reaction time, but can be helpful to those seeking to optimise their performance when fencing.

Team sports

In order to win in team sports, factors such as understanding between team members, the design of a good strategy and conditions favourable to the team, as well as physical and specific abilities, all play a part. The relationship between caffeine and team sports has been studied using different methodologies, but always with the same objective: to determine how to achieve better performance in these sports. To cite one example, one research group31 designed a protocol to simulate a rugby match of 2 halves lasting 40 minutes each, in which the participants had to complete a series of circuits which included straight and sideways sprints, and combining agility tests, tackles,
passes and periods of rest standing and walking. The subjects, 9 rugby players from First Division teams, took a capsule with 6 mg/kg of caffeine 70 minutes before the trial and after taking it registered improvements in sprint speed, tackling power and accuracy, as well as perceiving less fatigue. It would appear, therefore, that caffeine produces substantial improvements in several aspects of performance in team sports. We will now see what else scientific literature has published on the subject.

Volleyball

Two studies proposed a protocol which consisted of a series of volleyball-specific tests followed by a simulated match\[32,33\]. In both, 3 mg/kg of caffeine was administered by means of an energy drink 1 hour prior to the trial. Both Del Coso et al’s study\[33\] on 15 well-trained male volleyball players and Perez-Lopez et al’s study\[34\], involving 13 top female volleyball players, observed improvements in their subjects in terms of ball speed on serving, jumping height and agility in the tests, coupled with a higher percentage of successful actions during the match following the ingestion of caffeine compared to the placebo. This shows that the caffeine supplement used (3 mg/kg in energy drink) is an effective ergogenic aid for male and female volleyball players because it improves their physical performance and accuracy.

Football

The most recent study conducted on professional football players\[34\] indicates that the administration of 6 mg/kg of caffeine by means of capsules 65 minutes before playing does not seem to have any ergogenic effect on players’ activity profile during a football match. 22 junior-team players were evaluated during a football match after ingesting caffeine or placebo; the results showed no significant differences in the total distance covered, in the number of accelerations or in sprint intensity or distance between players taking caffeine and players taking the placebo. However, as we know, the patterns of activity in football are extremely variable and depend on numerous factors, such as possession of the ball; teams with the best technique tend to play a game based on greater possession without making great physical effort. Technical parameters were not evaluated in the study and so these may explain the lack of performance in the match. A study conducted on semi-professional football players by Del Coso et al\[35\] revealed improvements in jumping ability and sprint speed measured before a football match after caffeine intake; during the match, the total distance covered was greater and run at greater speed by players who had consumed caffeine. The participants were given an energy drink with 3 mg/kg of caffeine 60 minutes before performing a trial consisting of a maximal jump test and a test of repeated 30-metre sprints, followed by a standard football match. So the results of this study contradict those of Pettersen et al\[34\], suggesting that a dose of 3 mg/kg of caffeine is sufficient to increase sprint capability and both the distance covered and the speed at which it is covered in a football match. The increase in jumping ability may also favour how well footballers play in the air.

Two other studies\[35,36\] evaluated trained football players during simulations of 90-minute matches in which the participants completed intermittent running trials interspersed with jumping and passing accuracy tests. In Gant et al’s study\[35\], 3.7 mg/kg of caffeine was administered to the players in a concentrated carbohydrate drink 60 minutes before the simulation and every 15 minutes during the activity, while in Foskett et al’s study\[36\], the players consumed capsules containing 6 mg/kg of caffeine 60 minutes beforehand. In both studies, the participants significantly improved their jumping ability with caffeine intake compared to the placebo, while their passing accuracy only improved with caffeine intake in Foskett et al’s study\[36\] and average running speed increased with caffeine in Gant et al’s\[35\]. In general, we can say that caffeine is an effective ergogenic supplement in football; you simply have to take into account the dose of caffeine and how and when it is administered in order to achieve the desired improvements in the different parameters of performance, as seen in the studies conducted in the field.

Rugby football

Several studies have researched the ergogenic effects of caffeine on rugby-playing performance. One of these\[37\] evaluated the responses of the players belonging to the women’s national rugby sevens team to an energy drink with 3 mg/kg of caffeine. The players took the drink 1 hour before the start of a competition consisting of three 14-minute long rugby sevens matches with 15 minutes of rest between each game. At the end of the matches, the players performed a 15-second jumping test on a force platform. The caffeinated energy drink increased both the power produced in the leg muscles during the jumping test and running pace and speed during the games. Two other studies\[38,39\] designed rugby simulation protocols with trained university rugby players in which rugby-specific skills such as passing, coordination and sprinting were measured. In both studies, a solution with caffeine was administered 60 minutes before the tests, the dose in one study being 6 mg/kg\[38\] and the dose in the other being 4 mg/kg\[39\]. The results with the two doses were similar; the caffeine increased the athletes’ sprint speed at the beginning of the protocol and maintained their speed at the end of the trial, improved their coordination and showed a tendency to improve their passing accuracy compared to the placebo. These findings are a valuable example of the ergogenic effects of caffeine on performance in rugby.

Hockey

Duncan et al’s research\[40\] conducted on 13 competitive field hockey players concluded that the administration of 5 mg/kg of caffeine 60 minutes before playing hockey may be effective in offsetting decrements in skilled performance associated with fatigue. The study designed a protocol to fatigue the participants before performing a series of tests to measure hockey-specific skills (dribbling and ball handling). The results showed a significant increase in test scores after the intake of caffeine compared to the placebo. So the use of a caffeine supplement in hockey may be useful to enhance performance in players when fatigue sets in.
As we have seen, caffeine has proven to be an effective ergogenic aid in most sports situations. From small to moderate doses administered in different forms (gum, capsules, energy drinks and isotonic gels), it has helped improve technical, physical and cognitive performance abilities in sports people. However, studies which conclude that caffeine has no ergogenic effect on sports performance should not be overlooked: in these cases, we should draw conclusions to help us understand the behaviour of the substance better, i.e. to understand that caffeine intake does not entail an automatic improvement in the performance of the person taking it and that a number of factors determine whether its effects may prove optimal or null as far as performance is concerned.

Bibliography

The entire bibliography is provided at the end of the second part of the Review.
¿A cuántos estímulos responde tu corazón?

Vichy Catalán se preocupa por tu salud e investiga sobre el metabolismo del colesterol.

Te quiere
El hombre necesita mantenerse hidratado correctamente en su vida habitual pero donde es imprescindible un adecuado estado de hidratación es en el deporte. Sólo con una correcta hidratación se puede, por una parte, garantizar que no existirán problemas para la salud, y por otra, que el deportista no se exponda a dos graves circunstancias. La primera, que no sufra enfermedades o lesiones relacionadas con la deshidratación, como agotamiento por calor, golpe de calor o lesiones musculares incluso más allá de los calambres musculares. La segunda, y no menos importante, evitar la disminución del rendimiento deportivo, consecuencia de un déficit hidroelectrolítico.

Las necesidades de hidratación, en relación con la actividad física y deportiva, se presentan en tres situaciones: antes, durante y después del esfuerzo. En cada una de las circunstancias se debe conseguir una correcta hidratación. Preparar el organismo para la actividad, especialmente si se ha realizado en un ambiente muy caluroso y ha sido de larga duración, es imprescindible reponer las pérdidas hidro-electrolíticas y este agua proporciona estos elementos de una forma muy adecuada. Esto es especialmente importante, si la actividad deportiva se va a repetir en breve, como puede suceder en los deportes por etapas.

Es bien sabido que existen muchos líquidos que el hombre toma en su alimentación: agua y sus diversas modalidades, zumos, leche, refrescos, infusiones, bebidas deportivas, entre otras. Una de las aguas más conocidas es el Vichy Catalán, que ofrece esta empresa en agua carbónica embotellada. Fue el médico Modest Furest quien en 1880 adquirió los manantiales de agua termal del Puig de les Ànimes e inició el proceso que conduciría a este producto a ser un referente actual. El compromiso de esta empresa con la hidratación en el deporte lo demuestran varios hechos, pero el más notorio es el de la elección de Vichy Catalán y Font d’Or como las aguas de los XXV Juegos Olímpicos, celebrados en Barcelona en 1992.

Vichy Catalán es un agua mineral natural con gas carbónico y con un contenido de sales muy adecuado, especialmente en lo que supone el sodio, y que favorece los procesos digestivos. El papel de una bebida de estas características en el contexto de la actividad física, como puede ser en el ámbito laboral y doméstico, y deportivo, se centra en la hidratación en la alimentación habitual y en la que se realiza antes y después del ejercicio, y es consecuencia de sus propiedades. En primer lugar porque se trata de agua mineral de calidad como lo constata el hecho de sus certificaciones. En segundo lugar, por su contenido de electrolitos (bicarbonatos, sulfatos, cloruros, sodio, potasio y litio). En tercer lugar, por sus propiedades de palatabilidad que la convierten en una bebida muy agradable de tomar y por su digestibilidad por lo que es muy bien tolerada.

Antes de la actividad física es necesario hidratarse convenientemente para poder afrontar el esfuerzo en las mejores condiciones. Vichy Catalán proporciona la cantidad de agua y de electrolitos adecuados para los ejercicios de larga duración. Pero después de la actividad, especialmente si se ha realizado en un ambiente muy caluroso y ha sido de larga duración, es imprescindible reponer las pérdidas hidro-electrolíticas y este agua proporciona estos elementos de una forma muy adecuada. Esto es especialmente importante, si la actividad deportiva se va a repetir en breve, como puede suceder en los deportes por etapas.

En definitiva, un agua como Vichy Catalán es una opción muy útil para la hidratación y el aporte de electrolitos en la dieta habitual de cualquier persona, y de las que realizan actividad físico-deportiva, así como en la hidratación de después de la actividad física.

Referencias bibliográficas
XVI CONGRESO NACIONAL DE LA SOCIEDAD ESPAÑOLA DE MEDICINA DEL DEPORTE

Granada - Hotel M.A. Nazaries
23 al 26 de noviembre de 2016
COMITÉ ORGANIZADOR

Presidente: Pedro Manonelles Marqueta
Vicepresidente y Presidente Comité: Carlos De Teresa Galván
Organizador local: Luis Franco Bonafonte
Secretario General: Javier Pérez Ansón
Tesorero: Carmen Calderón Soto
Vocales: Juan Carlos De la Cruz Márquez, Teresa Gaztañaga Aurrekoetxea, José Fernando Jiménez Díaz, Leocricia Jiménez López, José Naranjo Orellana, Eduardo Ribot Rodríguez, Aurelio Ureña Espa

COMITÉ CIENTÍFICO

Presidente: Miguel Del Valle Soto
Secretario: Carlos Melero Romero
Vocales: Fernando Alacid Cárceles, Emilio Luengo Fernández, Eduardo Ortega Rincón, Nieves Palacios Gil-Antuñano, Jesús Rodríguez Huertas, Ángel Sánchez Ramos, José Luis Terreros Blanco

ÍNDICE PREVIO DEL PROGRAMA CIENTÍFICO

SESSIONES PLENARIAS

- Lesiones de partes blandas.
- Reconocimientos: controversia EEUU-Europa.
- Fisiología del ejercicio en ambientes extremos.

PONENCIAS

- Síndrome compartimental de esfuerzo en el deporte.
- La Actividad Física Beneficiosa para la Salud (AFBS-HEPA) en España y la UE, mitos y realidades.
- Actualizaciones en entrenamiento
- La salud en las redes sociales.
- Lesiones de hombro en el deportista.

CONTROVERSIAS

- Electroestimulación corporal total.
- Entrenamiento en altitud.
REMISIÓN DE COMUNICACIONES CIENTÍFICAS

El Comité Científico invita a todos los participantes a remitir comunicaciones científicas (comunicaciones orales y póster-presentación interactiva) al XVI Congreso Nacional de la Sociedad Española de Medicina del Deporte.

Temas para presentación de Comunicaciones Científicas en el Congreso:

- Medicina del deporte.
- Entrenamiento y mejora del rendimiento.
- Biomecánica.
- Cardiología del deporte.
- Fisiología del esfuerzo.
- Nutrición y ayudas ergogénicas.
- Cineantropometría.
- Lesiones deportivas: diagnóstico, prevención y tratamiento.
- Actividad física y salud.

Las Comunicaciones Orales se distribuirán en sesiones de los temas del Congreso. Por favor, escoja uno de los temas del listado como propuesta para realizar su presentación. El Comité Científico podrá reasignar el abstract en otro tema del Congreso.

Los trabajos deberán ser originales y no se habrán presentado en congresos anteriores o reuniones similares.

Las comunicaciones científicas admitidas, comunicaciones orales y pósters (presentación interactiva), serán publicadas en la revista Archivos de Medicina del Deporte.

Normas de remisión de abstracts

Por favor, preste atención a las siguientes normas de preparación del abstract de su comunicación científica (comunicación oral o póster: presentación interactiva), porque son de obligado cumplimiento:

- La fecha límite para la remisión de los trabajos científicos será el día 10 de septiembre de 2016.
- Se remitirá la Comunicación Científica a la atención del Presidente del Comité Científico, con el formulario debidamente cumplimentado, a la siguiente dirección de correo electrónico: congresos@femede.es.
- El abstract tiene que tener una clara relación con los contenidos del XVI Congreso Nacional de la Sociedad Española de Medicina del Deporte y, en definitiva, con la Medicina y Ciencias del Deporte.
- El Comité Científico podrá destinar el trabajo presentado a la forma de presentación (comunicación oral o póster: presentación interactiva) que considere más adecuada al tipo y contenido del mismo.
- El Comité Científico se reserva el derecho de rechazar los trabajos que no cumplan los requisitos indicados anteriormente por la calidad y temática que el evento científico requiere.

Forma de preparación del abstract

- Sólo se aceptarán las comunicaciones científicas presentadas en el formato electrónico que se encuentra en la página web del Congreso: www.femede.es/congresodegranada2016 “Formato de comunicación científica”.
- Título: El título deberá ser breve (máximo de 15 palabras) y específico. Debe reflejar el contenido de la presentación. No use abreviaturas en el título. Se escribirá en letras mayúsculas, usando el tamaño 12 del tipo de letra Arial.
- Autores: Se escribirá, en minúsculas, el apellido seguido, sin coma, de la inicial del nombre de cada autor, separados por comas.
- Centro: Indicar el centro de trabajo de los autores. Si son varios, indicar con un número superíndice.
- Preferencia de presentación: Seleccionar con un asterisco el tipo de presentación a la que presenta la comunicación científica.
- Texto: La extensión máxima del texto es de 300 palabras o 3.000 caracteres. Se escribirá en minúsculas, usando el tamaño 10 de la letra Arial. Se evitarán abreviaturas no explicadas. Se escri-
birá el contenido del resumen científico sin repeter el título de la Comunicación y ajustándose al siguiente esquema: introducción, material y métodos, resultados y conclusiones.

- Respetando la extensión máxima del texto se pueden incluir tablas, gráficos o imágenes.
- Es obligatorio indicar un máximo de tres palabras clave.
- Los abstracts deben incluir información específica sobre los resultados y las conclusiones de la investigación. No se aceptarán abstracts que establezcan que “se discutirán los resultados”.

Presentación de la comunicación oral

- Las Comunicaciones Orales tendrán un tiempo de presentación de 8 minutos. Al final de cada sesión habrá un turno de preguntas.
- Todas las exposiciones orales se harán en formato Powerpoint, debiendo estar en posesión del responsable de las Comunicaciones de la organización el día anterior a la presentación de la misma.
- Se limita a un máximo de 12 el número de diapositivas de la presentación de powerpoint.

Notificación de la recepción de la comunicación científica

En el plazo de 15 días, Vd. recibirá la confirmación de recepción de la comunicación por parte de la Secretaría del Congreso. Si no la recibiera, no vuelva a remitir la comunicación y envíe un mensaje electrónico: congresos@femede.es.

Inscripción del responsable de la comunicación científica

- Cada persona puede presentar dos comunicaciones científicas como máximo (comunicación oral o póster: presentación interactiva). En caso de ser aceptadas ambas, sólo una de ellas podrá ser presentada como comunicación oral.
- Los autores (CADA UNO PUEDE PRESENTAR DOS TRABAJOSS) que presenten una comunicación científica (comunicación oral o póster: presentación interactiva) y ésta haya sido aceptada, deben haberse registrado y haber pagado los derechos de inscripción del Congreso antes del 20 de octubre de 2016. En caso contrario su comunicación científica (comunicación oral o póster-presentación interactiva) será eliminada del programa y del libro de abstracts.
- Cada autor puede FIRMAR todos los trabajos que quiera.
- No hay limitación en el número de comunicaciones que puede aparecer una misma persona.

Póster (presentación interactiva)

Si su abstract se acepta pero no se puede ajustar a una presentación en forma de Comunicación Oral, se le pondrá presentarlo en forma de póster-presentación interactiva, dándole un tiempo para su preparación.

Presentación del póster (presentación interactiva)

Para la elaboración del póster (presentación interactiva) debe seguir las siguientes instrucciones que son de obligado cumplimiento:

- Formato Microsoft Powerpoint.
- Hasta 12 diapositivas, de las cuales:
 - La primera: debe contener título, autores, centro de trabajo.
 - La última: debe contener título y la palabra FIN o expresión similar que indique que la presentación ha concluido.
 - La penúltima o las dos penúltimas deben contener las conclusiones.
- Fondo de diapositivas: color neutro y uniforme.
- Texto de diapositivas: color que contraste con el fondo.
- En lo posible evitar incluir vídeos en las diapositivas, si se hiciera debería ser en formato .wmv y se deberá incluir en un subdirectorio/carpeta que enlace automáticamente con la presentación remitida. Si el video no enlaza con la presenta-
ción, no se editará por parte de la organización para corregir el error.

· La organización se reserva el derecho de ocultar diapositivas que incluyan contenidos inapropia-
 dos o inadecuadamente referenciados.

· El uso de cualquier imagen que no sea de la autó-
 ría del/los firmante/firmantes de la presentación
 deberá contener referencia a (y eventualmente
 permiso de) su autor en la misma presentación o
 bien podrá ser retirada de la misma y en todo caso
 la organización no se hará responsable en ningún
 caso de las consecuencias del uso inapropiado de
 aquellas.

· Se cuidará de igual manera de incluir las referen-
 cias bibliográficas oportunas en pequeño tamaño
 de letra, pero que sea legible.

· El abstract debe remitirse preparado tal como se
 indica anteriormente (Forma de preparación del
 abstract).

· Una vez que se le confirme que su comunicación
 científica ha sido aceptada para ser presentada
 en forma de póster (presentación interactiva) deb
 e enviar el documento electrónico (.Ppt):

 · Trabajos destinados por el autor directamente
 a póster (presentación interactiva): antes del
 10 de septiembre de 2016.

 · Trabajos destinados por el autor a Comunica-
 ción Oral y que el Comité Científico destina a
 póster (presentación interactiva): antes del
 20 de septiembre de 2016.

· El documento electrónico (.Ppt) debe enviarse a
 la dirección electrónica del Congreso: congres-
 sos@femede.es.

Certificaciones

Tras la presentación de la comunicación oral o la defen-
sa del póster en el modo en que se indique se entregará
un único certificado al responsable de la comunicación
científica.

Publicación de los trabajos científicos

Los abstracts de los trabajos científicos (comunicacio-
nes orales y póster) aceptados y presentados en el
XVI Congreso Nacional de la Sociedad Española de
Medicina del Deporte serán publicados en la revista
Archivos de Medicina del Deporte, publicación
científica de esta especialidad y revista oficial de la
Sociedad Española de Medicina del Deporte, que tiene
una periodicidad de publicación bi-mensual.

Presentaciones

· Documento de consenso de la Sociedad
 Española de Medicina del Deporte
 (SEMED-FEMEDE) sobre deporte
 recreacional saludable.

· Pruebas de Esfuerzo en Medicina del
 Deporte. Documento de Consenso de la
 Sociedad Española de Medicina del
 Deporte (SEMED-FEMEDE).