Previous intakes to a competitive match in young soccer players

Juan D. Hernández Camacho1, Elena Fuentes Lorca2, José M. Martínez Sanz3

Summary

Introduction: It has been shown that nutrition plays a crucial role in sport performance, consequently athletes should pay attention to their nutritional habits. However, it is not completely clear what athletes eat just before the sport competition.

Objectives: Analyze the previous energy and nutrient ingestions to a match in soccer players.

Material and method: Previous intakes from forty-seven players were collected using a 24 hours recall questionnaire. Twenty-four and three hours intakes before the competition were examined using a nutrient’s composition software. Brand names of commercial food were included. Information concerning time of day, cooking methods and amount of food prepared were collected. Height and weight were measured. Players were asked if they have received nutritional directions in previous seasons. Descriptive statistics (mean ± SD) and t-student analyses were used.

Results: The mean kcal ingestion was 34.68 ± 16.31 kcal/kg body weight twenty-four hours and 6.89 ± 3.38 kcal/kg body weight three hours before. Carbohydrate average intake was 3.35 ± 1.59 grams/kg body weight twenty-four hours and 0.87 ± 0.43 grams/kg body weight three hours before the match. Proteins mean consumption was 1.49 ± 0.76 grams/kg body weight twenty-four hours and 0.23 ± 0.16 grams/kg body weight three hours before the match. Differences were obtained between players who received nutritional direction and the other players in energy, carbohydrate, proteins and lipids ingested.

Conclusion: The players studied presented a low kcal and carbohydrate ingestion twenty-four and three hours before a competitive match and they did not fulfill nutritional recommendation. However, nutritional directions could improve previous energy and nutrients intakes.

Introduction

From long time ago, it is well known that nutrition plays an essential role in sport performance. The pattern of play in soccer is based on intermittent high-intensity actions and soccer particular skills where muscle glycogen and plasma glucose are crucial for energy production. A lot of importance is given to previous ingestion to a sport competition. Mujika et al. proposed that performance in team sports is often related with nutritional factors, right nutritional directions allow the athletes to be well fueled and hydrated during the games. They recommend that athletes should take 1-4 g of carbohydrate per kg of body weight (BW) 1-4 h before the trials and during the games tasting carbohydrate 30-60 g per hour. A previous study focused on the nutrition on match day; the authors highlighted the combination of a high carbohydrate pre-match meal and a sports drink during the match. A pre-match intake should be composed of low-glycaemic index (GI) carbohydrate foods because this option would result in feeling of satiety for longer and a stable blood glucose concentration.

Another research assessed dietary intake and nutrition knowledge in elite and sub-elite male soccer players. They found that nutrition knowledge was weak and dietary intake did not fulfill with carbohydrate recommendation. Andrews MC, Itsiopoulos examined three days of dietary intake in male soccer professional and semiprofessional players. Their intakes did not fulfill carbohydrate recommendations, even, some interviewed athletes consumed alcohol. A positive correlation between sport nutrition knowledge and carbohydrate intake was described. They speculated that nutritional education would be really useful to improve dietary practices. Additionally, Azizi et al. showed that nutrition knowledge of young athletes needs to be improved. Another paper determined nutrients intake in Japanese collegiate soccer players. Carbohydrate and protein intakes were lower than recommended targets. The dietary patterns showed a low ingestion of vegetables, milk and dairy products, fruits and eggs.

A previous study evaluated the nutritional intake of soccer players from the junior teams of a Spanish First Division Soccer League Club. The mean energy intake was 2796.4 ± 525.8 kcal, players analyzed ingested 1.6 ± 0.4 g/kg BW of proteins and 4.7 ± 1.1 g/kg BW of carbohydrate. Russell and Pennock examined nutritional habits of professional male soccer players from a youth team of a UK based Championship club. Mean energy ingestion was 2831 kcal. The intake of carbohydrates was 5.9 ± 0.4 g/kg BW/d, proteins ingestion was 1.7 ± 0.1 g/kg BW/d and fat consumption was 1.5 ± 0.1 g/kg BW/d. Caccialanza et al. determined dietary intake of a sample of seventy-five young soccer players. Mean kcal intake was 37.7 kcal/kg BW, mean consumption of carbohydrate was 5.0 g/kg BW, proteins 1.5 g/kg BW and lipids were 87.1 g/kg BW. Few studies have analyzed nutritional intakes on female soccer players or soccer referees, although it has been reported that female soccer player and soccer referees did not completely fulfill nutritional recommendations.

Taking in consideration all these studies, it seems that generally soccer players do not fulfill dietary intakes recommendations, although it is not completely clear yet. But it seems that nutritional knowledge could be a useful instrument to improve these dietary patterns. The mean objective of the current research was to analyze the twenty-four and three hours previous intakes to a competitive match.

Material and method

Subjects

A total of fifty-eight soccer players from an amateur Spanish team voluntarily participated. The mean age was 17.43 ± 2.88 years. They were regularly involved in competitive trainings and matches. The study was conducted during the first months of competitive season. They delivered informed written consents which had been signed by their parents.

Dietary assessment section

Previous twenty-four and three hours dietary intake to a competitive soccer match was recorded with a 24 hour recall questionnaire. Highly skill technicians supervised and helped soccer players to complete the questionnaires in order to collect accurate information. Soccer players were provided with written and verbal indications to record foods and fluids ingested with household measures. Brand names of commercial food were included. Information concerning time of day, cooking methods and amount of food prepared were collected. Questionnaires were reviewed to clarify ambiguous data. Eleven questionnaires were removed because these questionnaires did not express clear information for this reason the final sample was constituted by forty-seven soccer players.

The questionnaires were analyzed with a nutrient’s composition software program (DIAL 1.19 version) to determine participant’s nutrient intake for the 24 hours and 3 hours period studied. This process was performed by a single trained and experienced technician. This method has been previously validated in young soccer players to analyze food intake.

Soccer academy where the study was performed had a nutrition area as part of the medical services. Consequently, some of the athletes examined had received nutritional attention in previous seasons as part of nutrition area previous work. Soccer players were asked about if they have received personalized nutritional attention by nutrition area of the soccer academy in previous seasons in order to examine if a previous intervention could have effects in previous food intakes. This nutritional intervention was defined as an individual consultation including nutritional recommendations. The recommendations highlighted the importance of carbohydrates from fruits, cereals and vegetables before and after competition to improve sport performance. High protein foods such as fishes, meats, nuts, milk and dairy products were recommended after sport practice to promote muscular recovery. Soccer players were discouraged to ingest ultra-processed products due to its high level in simple sugars. Weight (kg) and height (cm) were recorded using an electronic weighing machine (Tanita UM-0.76) and stadiometer (Seca).

The experimental protocol was written following the ethics rules from Helsinki Declaration. All experimental procedures were in accordance with the Pablo de Olavide University Ethical Committee rules.

Statistical Analysis

SigmaPlot 12.5 version (Systat software) was used for Statistical Analyses. Descriptive statics (mean ± SD) were reported for the different parameters analyzed. T-student analyses were used in order to determine significant differences. The effect sizes (ES) were conducted according to previous procedures using values for Cohen’s (|<0.2 small
Results

The mean weight and height were 67.77 ± 8.33 kg and 172.92 ± 6.57 cm. Mean intakes of energy (kcal), proteins, carbohydrates and lipids are presented in Table 1. Mean energy ingestion was 2277.55 kcal 24 hours before the match and 457.33 kcal 3 hours before. Carbohydrates consumption was 220.59 grams 24 hours before and 58.04 grams 3 hours before the match. Mean protein ingestion was 97.50 grams 24 hours and 15.83 grams 3 hours before. Lipids consumption was 109.94 grams 24 hours before the match and 19.27 grams 3 hours before.

Figure 1 shows the ingestions of energy and nutrients analyzed 24 and 3 hours before the match. Figure 1 also distinguishes between players who received nutritional recommendations in previous seasons and players who did not received. Soccer players with nutritional recommendations consumed 43.17 ± 14.99 kcal/kg BW, 4.08 ± 1.61 g of carbohydrates/kg BW, 1.91 ± 0.67 g of proteins/kg BW and 2.03 ± 0.80 g of lipids/kg BW 24 hours before the match. While players with no recommendations consumed 30.29 ± 15.40 kcal/kg BW, 2.96 ± 1.46 g of carbohydrates/kg BW, 1.27 ± 0.72 g of proteins/kg BW and 1.47 ± 0.82 g of lipids/kg BW 24 hours before the match.

Soccer player who received nutritional recommendations took 8.60 ± 1.65 kcal/kg BW, 1.09 ± 0.30 g of carbohydrate/kg BW, 0.26 ± 0.08 g of proteins/kg BW and 0.33 ± 0.09 g of lipids/kg BW 3 hours before the match. While players who did not received these recommendations consumed 6.00 ± 3.64 kcal/kg BW, 0.76 ± 0.45 g of carbohydrates/kg BW, 0.22 ± 0.19 g of proteins/kg BW and 0.26 ± 0.20 g of lipids/kg BW 3 hours before the match.

Discussion

The main point of this study was to examine the previous intakes before a match in youth soccer players, the average kcal/kg BW consumption was 34.68 ± 16.31 24 hours before a match, the average protein g/kg BW ingestion was 1.49 ± 0.76 and the mean carbohydrates consumption g/kg BW was 3.35 ± 1.59. Three hours before the match, soccer players consumed 6.89 ± 3.38 kcal/kg BW and 0.87 ± 0.43 carbohydrate g/kg BW.

Differences were found in energy, proteins and carbohydrates consumption 24 hours and 3 hours in soccer players when they have attended to nutritional consultancies.

Few studies have examined nutritional intakes in soccer players, a recent paper evaluated seventy-two young male soccer players from junior teams in Mexican National Soccer league. The authors observed an energy intake of 2500-3100 kcal and a carbohydrate intake 5.4-6.7 g/kg BW/day, showing an optimal carbohydrates energy contribution. Furthermore, these players presented a 1.2 ± 0.1 g/kg BW carbohydrate pre-exercise ingestion. Another research examined eighty-one soccer players from the Arenas Football Club (Bizkaia, Spain). They found a mean consumption of 4.14-54.61 kcal/kg BW, 1.81-2.14 g/kg BW proteins, 1.76-2.20 g/kg BW lipids and 4.57-6.68 g/kg BW carbohydrates. Even, another study evaluated nutrient intake in sixteen England female soccer players. They observed a low energy intake 1904 ± 3663 kcal, 4.1 ± 1.0 g/kg BW carbohydrate, 1.2 ± 0.3 proteins g/kg BW and 0.9 ± 0.2 fats g/kg BW. Clark et al. examined fourteen female soccer players. At the beginning of the season, players presented a 2290 ± 310 kcal intake, 5.2 ± 1.1 carbohydrate g/kg BW ingestion and 1.4 ± 0.3 protein g/kg BW consumption.

These studies show that soccer players need enough energy consumption and carbohydrate to maintain energy supplies for sport demands. In our study, the carbohydrate ingestion was greater than the rest of macronutrients in line with the results from previous studies probably due to the impact of carbohydrate ingestion on intermittent sports performance like soccer. However, a lower carbohydrate consumption was detected. As it has been previously mentioned this situation could have negative consequences on sport performance; athletes examined should be encouraged to increase carbohydrates in their diets in order to enhance their muscle glycogen stores before the match. Soccer players analyzed presented a low ingestion of kcal and carbohydrate while they showed an acceptable proteins and lipids consumption. García-Rovés et al. highlighted that is essential analyzed nutritional ingestions and food preferences to implement successfully a nutritional program in soccer players and they reported that few studies of nutritional ingestion in soccer players are available. Consequently, it could be important to analyze nutrients and energy intake before a nutritional intervention in soccer.

It seems that nutritional interventions could improve previous nutrient ingestions to a competitive match in young players. As it can be seen in Figure 1, nutritional interventions increased total kcal, proteins, carbohydrates and lipids ingestion 24 and 3 hours before the sport competition. However, carbohydrates ingestion per day from players who received nutritional recommendations and who did not receive

| Table 1. Energy and nutrient ingestion in the young soccer players studied. |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | Intakes (24 hours) | Intakes (3 hours) | Intakes (24 hours) / BW (kg) | Intakes (3 hours) / BW (kg) |
| Energy (kcal) | 2277.55 ± 902.66 | 457.32 ± 204.74 | 34.68 ± 16.31 | 6.89 ± 3.38 |
| Carbohydrates (grams) | 220.59 ± 91.44 | 58.04 ± 26.25 | 3.35 ± 1.59 | 0.87 ± 0.43 |
| Proteins (grams) | 97.50 ± 42.36 | 15.83 ± 10.02 | 1.49 ± 0.76 | 0.23 ± 0.16 |
| Lipids (grams) | 109.94 ± 49.38 | 19.27 ± 12.10 | 1.66 ± 0.85 | 0.28 ± 0.18 |

Data frequencies for 47 soccer players. BW (body weight).
Figure 1. Energy and nutrients intakes normalized with body weight.
it were away from recommended intakes (4.08 ± 1.61 and 2.96 ± 1.46 vs 6-10 g/ kg BW). Besides, players who received nutritional guidance fulfilled fuel requirements for match play 3 hours before the game while players did not receive did not fulfilled (1.09 ± 0.30 and 0.76 ± 0.45 vs 1-4 g/kg BW). Molina-López et al. supported these results because they proposed that nutritional education programs could lead athletes to adopt appropriate nutritional habits. Another study examined dietary ingestions in professional soccer players obtaining that macro and micro nutrients consumption was inadequate, therefore nutritional intervention could be helpful.

Additionally, a positive correlation between nutrition knowledge and carbohydrate intake was previously obtained and the authors proposed that nutritional education would improve dietary habits in soccer players. Another study suggested that previous nutritional interventions have increased carbohydrate content in soccer player’s diets, improving sport performance, as we have obtained in the present study. Additionally, Murphy and Jeanes proposed that there would be a needed assistance in young soccer players to implement nutritional knowledge to increase nutritional intakes indicating that nutritional guidance would be really beneficial for athletes.

The present research is one of the first studies that analyze energy and nutrient ingestions before a match in Spanish young soccer players.

The current study presents limitations. Firstly, there are errors inherent of all dietary recall methods. Furthermore, we have only studied young male nonprofessional soccer players, consequently conclusions obtained cannot be extrapolate neither the rest of soccer players nor other sport disciplines. Another would be the selection no probabilistic of the players evaluated.

Finally, the players studied presented a low kcal and carbohydrate ingestion 24 and 3 hours before a competitive match. However, a nutritional intervention could improve previous energy and nutrients intakes.

Conflict of interest

The authors do not declare a conflict of interest.

Bibliography